Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sex chromosome dosage compensation is a model to understand the coordinated evolution of transcription; however, the advanced age of the sex chromosomes in model systems makes it difficult to study how the complex regulatory mechanisms underlying chromosome-wide dosage compensation can evolve. The sex chromosomes ofPoecilia pictahave undergone recent and rapid divergence, resulting in widespread gene loss on the male Y, coupled with complete X Chromosome dosage compensation, the first case reported in a fish. The recent de novo origin of dosage compensation presents a unique opportunity to understand the genetic and evolutionary basis of coordinated chromosomal gene regulation. By combining a new chromosome-level assembly ofP. pictawith whole-genome bisulfite sequencing and RNA-seq data, we determine that the YY1 transcription factor (YY1) DNA binding motif is associated with male-specific hypomethylated regions on the X, but not the autosomes. These YY1 motifs are the result of a recent and rapid repetitive element expansion on theP. pictaX Chromosome, which is absent in closely related species that lack dosage compensation. Taken together, our results present compelling support that a disruptive wave of repetitive element insertions carrying YY1 motifs resulted in the remodeling of the X Chromosome epigenomic landscape and the rapid de novo origin of a dosage compensation system.more » « less
-
Explaining broad molecular, phenotypic and species biodiversity patterns necessitates a unifying framework spanning multiple evolutionary scales. Here we argue that although substantial effort has been made to reconcile microevolution and macroevolution, much work remains to identify the links between biological processes at play. We highlight four major questions of evolutionary biology whose solutions require conceptual bridges between micro and macroevolution. We review potential avenues for future research to establish how mechanisms at one scale (drift, mutation, migration, selection) translate to processes at the other scale (speciation, extinction, biogeographic dispersal) and vice versa. We propose ways in which current comparative methods to infer molecular evolution, phenotypic evolution and species diversification could be improved to specifically address these questions. We conclude that researchers are in a better position than ever before to build a synthesis to understand how microevolutionary dynamics unfold over millions of years.more » « less
-
Abstract Hares (genus Lepus) provide clear examples of repeated and often massive introgressive hybridization and striking local adaptations. Genomic studies on this group have so far relied on comparisons to the European rabbit (Oryctolagus cuniculus) reference genome. Here, we report the first de novo draft reference genome for a hare species, the mountain hare (Lepus timidus), and evaluate the efficacy of whole-genome re-sequencing analyses using the new reference versus using the rabbit reference genome. The genome was assembled using the ALLPATHS-LG protocol with a combination of overlapping pair and mate-pair Illumina sequencing (77x coverage). The assembly contained 32,294 scaffolds with a total length of 2.7 Gb and a scaffold N50 of 3.4 Mb. Re-scaffolding based on the rabbit reference reduced the total number of scaffolds to 4,205 with a scaffold N50 of 194 Mb. A correspondence was found between 22 of these hare scaffolds and the rabbit chromosomes, based on gene content and direct alignment. We annotated 24,578 protein coding genes by combining ab-initio predictions, homology search, and transcriptome data, of which 683 were solely derived from hare-specific transcriptome data. The hare reference genome is therefore a new resource to discover and investigate hare-specific variation. Similar estimates of heterozygosity and inferred demographic history profiles were obtained when mapping hare whole-genome re-sequencing data to the new hare draft genome or to alternative references based on the rabbit genome. Our results validate previous reference-based strategies and suggest that the chromosome-scale hare draft genome should enable chromosome-wide analyses and genome scans on hares.more » « less
An official website of the United States government
